Numerous surveys on matroid theory from all its different perspectives have been written since the first one in 1940. Many of them can be found online, but the links change every few years, so there are no links here. Best to read some of the recent surveys before reading the older ones. Several surveys were written in 2003 for example.  Moreover, recent surveys can be found on the authors website just by doing a google search of the survey title.

  1. MacLane, S. (1940). Modular fields, Amer. Math. Monthly 47, 259-274.
  2. Bose, R. C. (1947). Mathematical theory of the symmetrical factorial design. Sankyha 8, 107-166.
  3. Harary, F. and Welsh, D. (1969). Matroids versus graphs. The Many Facets of Graph Theory (Proc. Conf., Western Mich. Univ., Kalamazoo, Mich., 1968), 155-170, Springer, Berlin.
  4. Edmonds, J. (1970). Submodular functions, matroids, and certain polyhedra. Combinatorial Structures and their Applications (Proc. Calgary Internat. Conf., Calgary, Alta., 1969), 69-87 Gordon and Breach, New York.
  5. Lesieur, L. (1970). Géométries combinatories. Enseignement Math. (2) 16, 185-193.
  6. Crapo, H. H. and Rota, G. -C. (1971). On the foundations of combinatorial theory. II. Combinatorial geometries. Studies in Appl. Math. 49, 109-133.
  7. Ingleton, A. W. (1971). Representation of matroids. 1971 Combinatorial Mathematics and its Applications (Proc. Conf., Oxford, 1969), 149-167. Academic Press, London.
  8. Rota, G. -C. (1971). Combinatorial theory, old and new. Proc. Internat. Cong. Math. (Nice, Sept. 1970), 229-233. Gauthier-Villars, Paris.
  9. Welsh, D. J. A. (1971). Combinatorial problems in matroid theory. 1971 Combinatorial Mathematics and its Applications (Proc. Conf., Oxford, 1969), 291-306 Academic Press, London.
  10. Lovász, L. (1972). A brief survey of matroid theory. Mat. Lapok 22, 249-267.
  11. Weinberg, L. (1972). Planar graphs and matroids. Graph theory and applications (Proc. Conf., Western Michigan Univ., Kalamazoo, Mich., 1972; dedicated to the memory of J. W. T. Youngs), 313-329. Lecture Notes in Math., Vol. 303, Springer, Berlin.
  12. Dowling, T. A. (1973). A q-analog of the partition lattice. A survey of combinatorial theory, 101-115. North-Holland, Amsterdam.
  13. Kelly, D. and Rota, G. -C. (1973). Some problems in combinatorial geometry. A survey of combinatorial theory, 309-312. North-Holland, Amsterdam.
  14. Wilson, R. J. (1973). An introduction to matroid theory. Amer. Math. Monthly 80, 500-525.
  15. Young, H. P. (1973). Affine triple systems. Finite geometric structures and their applications (C. I. M. E., II Ciclo, Bressanone, 1972), 265-282. Edizioni Cremonese, Rome.
  16. Simöoes-Pereira, J. M. S. (1974). Matroids, graphs and topology. Proceedings of the Fifth Southeastern Conference on Combinatorics, Graph Theory and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1974), Congressus Numerantium 10, 145-155.
  17. Brualdi, R. A. (1975). Matroids induced by directed graphs, a survey. Recent advances in graph theory (Proc. Second Czechoslovak Sympos., Prague, 1974), 115-134. Academia, Prague.
  18. Ingleton, A. W. (1977). Transversal matroids and related structures. Higher combinatorics (Proc. NATO Advanced Study Inst., Berlin, 1976) , 117-131, NATO Adv. Study Inst. Ser., Ser. C: Math. Phys. Sci., 31, Reidel, Dordrecht-Boston, Mass.
  19. Lovász, L. (1977). Flats in matroids and geometric graphs. Combinatorial surveys (Proc. Sixth British Combinatorial Conf., Royal Holloway Coll., Egham, 1977), 45-86. Academic Press, London.
  20. Lovász, L. (1977). Matroids and geometric graphs. Combinatorial surveys: Proceedings of the sixth British combinatorial conference, 45-86. Academic Press, London.
  21. Brylawski, T. H. and Kelly, D. G. (1978). Matroids and combinatorial geometries. Studies in combinatorics , 179-217. MAA Studies in Math., 17, Math. Assoc. America, Washington, D.C.
  22. Seymour, P. D. (1978). Some applications of matroid decomposition. Algebraic methods in graph theory, Colloq. Math. Soc. Janos Bolyai , 25, 713-726. North-Holland, Amsterdam.
  23. Iri, M. (1979). A review of recent work in Japan on principal partitions of matroids and their applications. Second International Conference on Combinatorial Mathematics (New York, 1978), 306-319, Ann. New York Acad. Sci., 319, New York Acad. Sci., New York.
  24. Welsh, D. (1979). Colouring problems and matroids. Surveys in combinatorics (Proc. Seventh British Combinatorial Conf., Cambridge, 1979), 229-257, London Math. Soc. Lecture Note Ser., 38, Cambridge Univ. Press, Cambridge-New York.
  25. Zimmermann, U. (1979). Matroid intersection problems with generalized objectives. Survey of mathematical programming (Proc. Ninth Internat. Math. Programming Sympos., Budapest, 1976), Vol. 2, 383-392, North-Holland, Amsterdam-Oxford-New York.
  26. Deza, M. (1980). Finite commutative Moufang loops, related matroids, and association schemes. Proceedings of the West Coast Conference on Combinatorics, Graph Theory and Computing (Humboldt State Univ., Arcata, Calif., 1979), Congressus Numeratium 26, 3-15.
  27. Las Vergnas, M. (1980). On the Tutte polynomial of a morphism of matroids. Combinatorics 79 (Proc. Colloq., Univ. Montréal, Montreal, Que., 1979), Part I. Ann. Discrete Math. 8, 7-20.
  28. Bixby, R. E. (1981). Matroids and operations research. Advanced techniques in practice of operations research, 333-458. North-Holland, New York.
  29. Iri, M. (1981). Application of matroid theory to engineering systems problems. Proceedings of the Sixth Conference on Probability Theory, 107-127, Ed. Acad. R.S. Romania, Bucharest.
  30. Iri, M. and Fujishige, S. (1981). Use of matroid theory in operations research, circuits and systems theory. Internat. J. Systems Sci. 12, no. 1, 27-54.
  31. Maffioli, F. (1981). An introduction to matroid optimization. Quaderni Serie III, 129. Quaderni Serie III, 133. Lecture Notes in Biomathematics ,51. Istituto per le Applicazioni del Calcolo “Mauro Picone” (IAC), Rome.
  32. Perfect, H. (1981). Independence theory and matroids. Math. Gaz. 65, no. 432, 103-111.
  33. Sce, M. (1981). Combinatorial geometry and finite geometries. Rend. Sem. Mat. Fis. Milano 51, 77-123.
  34. Korte, B. (1982). Matroids and independence systems. Modern applied mathematics (Bonn, 1979) , 517-553, North-Holland, Amsterdam-New York.
  35. Lov\'{a sz, L. and Recski, A. (1982). Selected topics of matroid theory and its applications. Proceedings of the 10th Winter School on Abstract Analysis (Srní, 1982). Rend. Circ. Mat. Palermo (2), 171-185.
  36. Hirshfield, J. W. P. (1983). Maximum sets in finite projective spaces. Surveys in Combinatorics. London Math. Soc. Lecture Notes82 , 55-76. Cambridge University Press, Cambridge.
  37. Iri, M. (1983). Applications of matroid theory. Mathematical programming: the state of the art (Bonn, 1982), 158-201, Springer, Berlin.
  38. Recski, A. (1984). Statics and electric network theory: a unifying role of matroids. Progress in combinatorial optimization (Waterloo, Ont., 1982), 307-314, Academic Press, Toronto, ON.
  39. Cai, M. C. (1985). Progress in network flow theory and matroid theory. Qufu Shiyuan Xuebao, no. 4, 40-50.
  40. Morikawa, T. (1985). Chemical matroids. I. Independence and dependence in chemical reaction systems. Match No. 17203-217.
  41. Shameeva, O. V. (1986). Representability of matroids and operations on them. Combinatorial analysis, No. 7, 119-126, 165, Moskov. Gos. Univ., Moscow.
  42. Tuyttens, D. and Teghem, J., Jr. (1986). Théeorie des matroöides et optimisation combinatoire. Belg. J. Oper. Res. Statist. Comput. Sci. 26, no. 1, 27-62.
  43. Liu, Z. H. (1987). Matroid theory and its applications. Qufu Shifan Daxue Xuebao Ziran Kexue Ban 13, no. 2, 1-18.
  44. Lindströom, B. (1988). Matroids, algebraic and nonalgebraic. Algebraic, extremal and metric combinatorics, 1986 (Montreal, PQ, 1986), 166-174, London Math. Soc. Lecture Note Ser., 131, Cambridge Univ. Press, Cambridge.
  45. Lindströom, B. (1988). Matroids: a mathematical abstraction with many models. Normat 36, no. 1, 4-12.
  46. Narayanan, H. (1988). Applications of matroid theory to engineering systems. Optimization, design of experiments and graph theory (Bombay, 1986), 283-298, Indian Inst. Tech., Bombay.
  47. Welsh, D. (1988). Matroids and their applications. Selected topics in graph theory, 3, 43-70, Academic Press, San Diego, CA.
  48. Dietrich, B. L. (1989). Matroids and antimatroids-a survey. Discrete Math. 78, no. 3, 223-237.
  49. Sim&0acute;es-Pereira, J. M. S. (1989). A flavor of matroids, graphs and optimal job assignment problems in operations research.Combinatorics, computing and complexity (Tianjing and Beijing, 1988), 173-190, Math. Appl. (Chinese Ser.), 1, Kluwer Acad. Publ., Dordrecht.
  50. Recski, A. (1989). Some open problems in matroid theory. Combinatorial Mathematics: Proceedings of the Third International Conference (New York, 1985) , 332-334, Ann. New York Acad. Sci., 555, New York Acad. Sci., New York.
  51. Beutelspacher, A. (1990). Linear spaces: history and theory. Graphs, designs and combinatorial geometries (Catania, 1989). Matematiche (Catania) 45, no. 1, 25-38.
  52. Beutelspacher, A. (1990). Applications of finite geometry to cryptography. Geometries, codes and cryptography (Udine, 1989) , 161-186, CISM Courses and Lectures, 313, Springer, Vienna.
  53. Graver, J. E. (1991). Rigidity matroids. SIAM J. Discrete Math. 4, no. 3, 355-368.
  54. Menghini, M. (1991). On configurational propositions. Pure Math. Appl. Ser. A 2, no. 1-2, 87-126.
  55. Bachem, A. and Kern, W. (1993). A guided tour through oriented matroid axioms. Acta Math. Appl. Sinica (English Ser.) 9, no. 2, 125-134.
  56. Bayer, Margaret M. and Lee, Carl W. (1993). Combinatorial aspects of convex polytopes. Handbook of convex geometry, Vol. A, B, 485-534, North-Holland, Amsterdam.
  57. Bokowski, J. (1993). Oriented matroids. Handbook of convex geometry, Vol. A, B, 555-602, North-Holland, Amsterdam.
  58. Bokowski, J. (1993). Oriented matroids. Handbook of convex geometry, Vol. A, B, 555-602, North-Holland, Amsterdam.
  59. Brehm, U. and Wills, J. M. (1993). Polyhedral manifolds. Handbook of convex geometry, Vol. A, B, 535-554, North-Holland, Amsterdam.
  60. Goddyn, L. A. (1993). Cones, lattices and Hilbert bases of circuits and perfect matchings. Graph structure theory (Seattle, WA, 1991), 419-439, Contemp. Math., 147, Amer. Math. Soc., Providence, RI, 1993.
  61. Goodman, J. E. and Pollack, R. (1993). Allowable sequences and order types in discrete and computational geometry. New trends in discrete and computational geometry , 103-134, Algorithms Combin., 10, Springer, Berlin.
  62. Kelmans, A. K. (1993). Graph planarity and related topics. Graph structure theory (Seattle, WA, 1991), 635-667, Contemp. Math., 147, Amer. Math. Soc., Providence, RI.
  63. Kung, J. P. S. (1993). Extremal matroid theory. Graph structure theory (Seattle, WA, 1991) , 21–61, Contemp. Math., 147, Amer. Math. Soc., Providence, RI.
  64. Mnëv, N. E. and Ziegler, G. M. (1993). Combinatorial models for the finite-dimensional Grassmannians. Discrete Comput. Geom. 10, no. 3, 241-250.
  65. Storme, L. (1993). k-arcs in ${\rm PG (n,q)$ and linear M.D.S. codes. Med. Konink. Acad. Wetensch. België 55, no. 3, 87-126. m-space.Jerusalem combinatorics ’93, 145-151, Contemp. Math., 178, Amer. Math. Soc., Providence, RI.
  66. Welsh, D. J. A. (1994). The computational complexity of knot and matroid polynomials. Graphs and combinatorics (Qawra, 1990). Discrete Math. 124, no. 1-3, 251-269.
  67. Beutelspacher, A. (1995). Projective planes. Handbook of incidence geometry, 107-136, North-Holland, Amsterdam.
  68. Bixby, R. E. and Cunningham, W. H. (1995). Matroid optimization and algorithms. Handbook of combinatorics, Vol. 1, 2, 551-609, Elsevier, Amsterdam.
  69. Borovik, A. V. and Roberts, S. K. (1995). Coxeter groups and matroids. Groups of Lie type and their geometries (Como, 1993), 13-34, London Math. Soc. Lecture Note Ser., 207, Cambridge Univ. Press, Cambridge.
  70. Kung, J. P. S. (1995). The geometric approach to matroid theory. Gian-Carlo Rota on combinatorics , 604-622, Contemp. Mathematicians, Birkh\”{a user Boston, Boston, MA.
  71. Seymour, P. D. (1995). Matroid minors. Handbook of combinatorics, Vol. 1, 2, 527-550, Elsevier, Amsterdam.
  72. Welsh, D. J. A. (1995). Matroids: fundamental concepts. Handbook of combinatorics, Vol. 1, 2, 481-526, Elsevier, Amsterdam.
  73. Kung, J. P. S. (1996). Matroids. Handbook of algebra, Vol. 1, 157-184, North-Holland, Amsterdam, 1996.
  74. Matou\v sek, J. (1998). Geometric set systems. European Congress of Mathematics, Vol. II (Budapest, 1996), 1-27, Progr. Math., 169, Birkhäuser, Basel.
  75. Ziegler, G. M. (1996). Oriented matroids today. Electron. J. Combin. 3, no. 1, Dynamic Survey 4, 39 pp. (electronic).
  76. Mahoney, C. R. (1997). Unimodality and the independent set numbers of matroids. African Americans in mathematics (Piscataway, NJ, 1996), 15-21, DIMACS Ser. Discrete Math. Theoret. Comput. Sci., 34, Amer. Math. Soc., Providence, RI, 1997. \item Oxley, J. G. (1997). Matroids.Graph connections , 100-115, Oxford Lecture Ser. Math. Appl., 5, Oxford Univ. Press, New York.
  77. Thas, J. A. (1998). Finite geometries, varieties and codes. Proceedings of the International Congress of Mathematicians, Vol. III (Berlin, 1998).Doc. Math. Extra Vol. III, 397-408 (electronic).
  78. Oxley, J. (1999). Unavoidable minors in graphs and matroids. Graph theory and combinatorial biology (Balatonlelle, 1996), 279-305, Bolyai Soc. Math. Stud., 7, J\'{a nos Bolyai Math. Soc., Budapest.
  79. Tutte, W. T. (1999). The coming of the matroids. Surveys in combinatorics, 1999 (Canterbury), 3-14, London Math. Soc. Lecture Note Ser., 267, Cambridge Univ. Press, Cambridge.
  80. Richter-Gebert, J. (1999). The universality theorems for oriented matroids and polytopes. Advances in discrete and computational geometry (South Hadley, MA, 1996), 269-292, Contemp. Math., 223, Amer. Math. Soc., Providence, RI, 1999.
  81. Welsh, D. (1999). The Tutte polynomial. Statistical physics methods in discrete probability, combinatorics, and theoretical computer science (Princeton, NJ, 1997). Random Structures Algorithms 15, no. 3-4, 210-228.
  82. Jones, C. and Libeskind-Hadas, R. (2000). Matroids: the theory and practice of greed. UMAP J. 21, no. 2, 181-201.
  83. Revyakin, A. M. (2000). On some classes of linear representable matroids. Formal power series and algebraic combinatorics (Moscow, 2000), 564-574, Springer, Berlin, 2000.
  84. Modan, L. (2000). Some new classes of connected matroids. Dedicated to Emeritus Professor Corneliu Constantinescu on the occasion of his 70th birthday. Libertas Math. 20, 141-147.
  85. Vasil’ev, V. A. (2001). Topology of plane arrangements and their complements. Math. Surveys 56, no. 2, 365-401.
  86. Kung, J. P. S. (2001). Twelve views of matroid theory. Combinatorial and computational mathematics (Pohang, 2000), 56-96, World Sci. Publishing, River Edge, NJ.
  87. Oxley, J. (2001). On the interplay between graphs and matroids. Surveys in combinatorics, 2001 (Sussex) , 199-239, London Math. Soc. Lecture Note Ser., 288, Cambridge Univ. Press, Cambridge.
  88. Aigner, M. (2001). The Penrose polynomial of graphs and matroids. Surveys in combinatorics, 2001 (Sussex) , 11-46, London Math. Soc. Lecture Note Ser., 288, Cambridge Univ. Press, Cambridge.
  89. Revyakin, A. M. (2002). Matroids. J. Math. Sci. (New York) 108, no. 1, 71-130.
  90. Cunningham, W. H. (2002). Matching, matroids, and extensions. ISMP 2000, Part 1 (Atlanta, GA). Math. Program. 91, no. 3, Ser. B, 515-542.
  91. Bonin, J. E. (2003). A brief introduction to matroid theory through geometry. Cubo Mat. Educ. 5, no. 3, 125-168.
  92. Borovik, A. V. (2003). Matroids and Coxeter groups. Surveys in combinatorics, 2003 (Bangor), 79-114, London Math. Soc. Lecture Note Ser., 307, Cambridge Univ. Press, Cambridge.
  93. Jackson, B. (2003). Zeros of chromatic and flow polynomials of graphs. Combinatorics, 2002 (Maratea). J. Geom. 76, no. 1-2, 95-109.
  94. Kingan, S. R. (2003). Matroids from a graph theory perspective, Graph Theory Notes of New York XLV, 21-35, New York Academy of Sciences.
  95. Malkevitch J. (2003). Matroids: The Value of Abstraction. What’s new in Mathematics,
  96. Malkevitch J. (2003). Oriented Matroids: The Power of Unification. What’s new in Mathematics,
  97. Pfeifle, J. and Rambau, J. (2003). Computing triangulations using oriented matroids. Algebra, geometry, and software systems, 49-75, Springer, Berlin.
  98. Oxley, J. G. (2003). What is a matroid? Cubo Mat. Educ. 5, no. 3, 179-218.
  99. Neel, D. L. and Neudauer, N. A. (2009) Matroids You Have Known, Mathematics Magazine Vol. 82, No. 1, Feb 2009, 26 – 41.
  100. Kingan, S. R. and Lemos, M. (2012), Two classification problems in matroid theory, (invited paper) Graph Theory Notes of New York LXIII, 17–27.

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

I am asked sometimes what a matroid is. I often revert to our sacred writings and recall the encounter of Alice with the grinning Cheshire cat. At one stage the cat vanishes away, beginning with the tip of its tail and ending with the grin, which persists long after the remainder of the cat. – W. T. Tutte

%d bloggers like this: